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Abstract. In this paper we consider the transformation from (minimal) Non-deterministic Finite
Automata (NFAs) to Deterministic Finite Cover Automata (DFCAs). We want to compare the two
equivalent accepting devices with respect to their number of states; this becomes in fact a compar-
ison between the expression power of the nondeterministic device and the expression power of the
deterministic with loops device. We prove a lower bound for the maximum state complexity of De-
terministic Finite Cover Automata obtained from Non-deterministic Finite Automata of a given state
complexityn, considering the case of a binary alphabet. We show, for such binary alphabets, that
the difference between maximum blow-up state complexity of DFA and DFCA can be as small as
2[51-2 compared to the number of states of the minimal DFA. Moreover, we show the structure of
automata for worst case exponential blow-up complexity from NFA to DFCA. We conjecture that
the lower bound given in the paper is also the upper bound. Several results clarifying some of the

*A preliminary version of the paper was presented at DCGARS 2004 conference.

fWork supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grant 600089

fWork supported by Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chair
Program to L.K.

$Work supported by Louisiana Board of Regents grant 32-0967-40766 and a LATECH-CenlT grant.



2 C. CAMPEANU, L. KARI, A. RUN/Results on Transforming NFA into DFCA

structure of the automata in the worst case are given (we strongly believe they will be pivotal in the
upper bound proof).

Keywords: Finite automata, deterministic automata, nondeterministic automata, cover automata,
state complexity

1. Introduction

State complexity of deterministic automata is important because it gives an accurate estimate of the
memory space needed to store the automaton. In case of finite languages, Deterministic Finite Cover
Automata reduce this space by taking into account the length of the longest word in the language, so that
in practice the amount of memory necessary to store such a structure is significantly reduced (we refer
the reader to [6] for examples of languages that exhibit such high degree of reduction in the number of
states when they are described with a DFCA). In [1], [2], [3] it is proved that for a given finite language
the state complexity of a minimal DFCA is always less than or equal to the state complexity of a DFA
recognizing the same language. Using this idea, it is interesting to know whether this improvement can
always be significant or not in the number of states of the automaton, since transforming a DFA to a
DFCA is also time consuming, the best known algorithm has the time complkityog n) (see [3] for

a detailed description of the algorithm).

The main purpose of this paper is to study the state complexity of the transformation from NFA to
DFCA. We will give a lower bound in the worst case for this transformation and also give some results
that we expect will be important in proving the upper bound of the transformation.

In [5] it is given an upper bound for converting NFA to minimal DFA for finite languages and non-
unary alphabets, and it is proved that the upper bound is reached in case of a binary alphabet. However,
in the general case there is no result about the structure of states/transitions of these automata.

We consider this question important and prove in the section 4 of the paper some properties of such
high complexity automata, for an arbitrary alphabet.

The unary case is not interesting for this particular problem, since for a language containing only
a word of lengthn — 1 (a™! if our alphabet has only the lette), a minimal NFA has: states. The
minimal DFA in this case has + 1 states, and the minimal DFCA hasstates. The problem is solved,
since if a minimal NFA has states and the associated DFCA has more thatates, the DFCA is not
minimal.

The main results of the paper is Theorem 1, where we prove a lower bound for state complexity of
NFA to DFCA transformations for the case of a binary alphabet, and the results in section 4 dealing with
arbitrary alphabets.

We prove that in the worst case the number of states of a minimal DFCA for a finite lanfjuage
a binary alphabet generated bysastate minimal NFA can be at least as hig2as? — 2¢=2 4+ 2t — 1,
wheret = [5]. Notice that this bound is just witlf —2 states lower than the bound obtained in [5] for
the worst case transformation from NFA to DFA.

In the next section we give some basic notations and in Section 3 we give an example of NFA of size
n, for which the corresponding DFCA has at le2ist? — 2¢—2 4 2! — 1 states, proving our lower bound.

The upper bound is not yet determined precisely as opposed to the results from [5]; the reason is that
the similarity relation is more complex than equivalence relations (similarity is not transitive) making
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the discussion more involved. In Section 4 we prove that if an NFA has a particular structure, the
corresponding minimal DFCA cannot exceed our lower bound, thus restricting the number of cases that
can produce a higher complexity.

2. Notations and Preliminary Results

The number of elements of a finite séis |A|, the empty sefl has no elements, $6| = 0. An alphabet
is a finite non-empty set, usually denoted By and an element of is a letter. A word is a finite
sequence of letters, and the empty string, denoted sthe word with no letters. The length of a string
w = wi...wp, w; € 3,1 <1¢<n,isthe numbenr of letters of the word and is denoted hy|. The
length ofe is 0. The set of all words over the alphabets denoted by=* and the set of words of length
kis Xk,

We assume the reader to be familiar with the basics in automata theory as contained in [4], [7].

A deterministic finite automatofshortly, a DFA)A is a quintupled = (Q, %, 9, qo, F'), where:

Q is the finite set of states;

¥ is the input alphabet;

0 : @ x ¥ — (@ is the state transition function;

qo € Q is the starting state, and

F C (@ is the set of final states.

A nondeterministic finite automatod, (denoted in the following text as NFA), is a quintuple
A = (Q,%,9,q,F), where@, %, qo, and F' are defined exactly the same way as for DFA, and
§: Q x ¥ — 29 is the transition function, wher2? denotes the power set of the finite &gt

Let A = (Q,X%,0,6, F) be a deterministic acyclic automaton. We denote the minimum and maxi-
mum level of a statg aslev(q) = min{|w| | 6(0, w) = ¢} and respectively, by.ev4(q) = max{|w| |
5(0,w) = q}.

The set of states of minimum and maximum leves levs; = {q € Q | leva(q) = i} and
Leva; ={q € Q| Leva(q) = i}, respectively.

When the automatod is understood, we can omit writing as subscript in the previous notation.

Let |X| = p be the number of letters in the alphahbeét Let L be a finite language ovet with [
the maximum length of the words ih. We denote byV;, = (X, Qn, dn, 0, Fy) @ minimal NFA with
L = L(Nyp), and byD;, = (3,@Qp,0p,0, Fp), the DFA obtained using the subset construction from
the NFA N.. Therefore, we consider without any loss of generality that sj@ogl = n is the number
of states in NFA, then we can re-number the states fiaom — 1: Qn = {0,1,...,n — 1}.

SinceNy, is minimal, then all states are useful and, also, there is a gtaté’y such that

1. forallg € Qu, there isw € ¥* such thatf € dx(q,w), and

2. 0n(f,a) =0, foralla € X.
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Without any loss of generality, we may assume thaVinthe first statey, is 0, and the last final state
isn—1=f.

For the following results and definitions, we refer the reader to [2].

A cover automaton for a languadewith words of length less than or equalites a DFA accepting
a cover languagé’, i.e., a language with the property thgtn ©<! = L. Two wordsz, y are L-similar
if for any word z with |z| < min(l — |z|,l — |y|), we have thatz € L if and only if yz € L, and write
thisz ~ y. Two words arel-dissimilar if they are nof.-similar. We can/will omit the subscript when
the languagéd. is understood.

A sequence of wordsy, zo, . . ., x, iS an L-dissimilar sequence if any two words in the sequence
are L-dissimilar.

In the same way we did for words, we can define the notion of similar states with respect with the
DFA Dy, as follows: s is similar tog in Dy, if for any word z of length less than or equal tain(l —
levp, (q),l —levp,(s)),dp(s,z) € Fpifandonly ifop(q, z) € Fp. We write this ass ~p, q.

We can construct a minimal cover DR, = (X, Q¢, d¢, 0, Fr) using the DFAD;, by merging
similar states. Please, note that minimal DFCA may not be unigque, we may have several non isomorphic
minimal DFCAs for the same language, but all these DFCAs have the same number of states.

The number of states in a minimal DFCA for a langudges equal to the length of any maximal
dissimilar sequence, which is equal to the number of states in the minimal DFA minus the number of
similarities on states in the minimal DFA (see [2] for the formal definitions and proofs).

Hence, the number of states of a minimal DFCA iois less than or at most equal to the number of
states inDy, (equality only when no states are similar in the DFA).

For0 < i <, letus denote by p; = U S. Please note tha@@p; C Qn, whilelevp, ; C

S€levpy i
20N,
Using Theorem 3 given by Salomaa and Yu in [5], we conclude that

n lo;

(p—1)
We investigate if this upper bound is also the lowest for |the| in terms ofn, and give a lower

bound for the worst case.
In order to do this, we denote bly= min{m | p™ > 2"} = min{m | m

|Qc| <1@p| <

> Tiog,p) =

[m1 As we will see in the following, this number has a special role in separating stalés ahd

Dy, (We recall that byN;, we understand a minimal nondeterministic automatonZfoand by D/, the
corresponding DFA obtained frofi;, using the subset construction).

We set
1
UB(n,p) = ( 1)) on—t _9n=t=2 UB(n) = UB(n,2),
LB ' =1) L ont ot andLB(n) = LB(n.2
(nap) (p o 1 + 1 an (TL) - (TL, )

In the current paper we will prove thatB(n) is the lower bound that can be reached.
We can see thdt B(n) = LB(n), if nis even. Fop = 2, the numbelU B(n) is

UB(n) — 2n—t—1 + 2n—t—2 + 2t _ 1’
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and
21 L 9t=2 1 9t _ 1, if niseven

LB(n)=2""1t_—92t72 49t 1=
(n) 20=2 4 ot 1, if n is odd.

3. The lower bound for the worst case DFCA complexity

In this section we provide examples to show that the nuniligfn) given in the previous section can be
reached.

Theorem 3.1. For each integen > 1, there exists a finite languadeC {a, b} such thatl is accepted
by a minimal acyclic:-state NFA, and any complete DFCA férhas at leasL. B(n) states.

Proof:
LetX = {a,b}. We distinguish two cases: can be either even oris odd.

l. If n is even we consider the languafig = L], UL, L], = {w | w = w1 b, |w| =t}, L) = {w |
w = uava, such thatw| < n, andjv| = [§] — 2}.

The languagd.,, is accepted by the nondeterministic automaton witstates), 1,..., n — 1 with
on(iya) = {i+1,t}, on(i,b) = {i + 1} forall0 < i <t —2,6xn(i,a) = dn(i,b) = {i + 1} for all
t<i<n-—3,0n(t—1,a)={t}én(t—1,b) ={n—1},andén(n —2,a) = {n — 1}.

This NFA is presented in Figure 1 (please, recall that n — 1).

b
b a,b a a,b Lb@_a@
\a

Figure 1. An example of NFA for which the DFCA reacheB(n) states.

We will show that there are at leabB(n) dissimilar words with respect tb.

If two words of length less than or equaltdnave different length, they are not equivalent. Indeed,
letz,y € %,y # ¢, andt > |z| =i > |y| = j. Thenxzb!=7 & L, since its length is greater thargso
is notin L) and also ends ih (thus, it is not inL!”). Butyb'~7 € L, since it has length and the last
letterisb (j < i < tandt — j >t —i > 0), thusz £y y, sincelyb’ 7| < |zb' 7| =i+t —j <2t —1
and2t — 1 is exactly the length of the longest words.

For e and words of length, we check similarities with words ending brand with words ending in
a. For the first case; ¢ L, butw = wib € L,, for all words with|w;| = ¢t — 1. For the second case,
if w = wia, wa" ! € L, buta® "1 ¢ L, for all words with|w;| =t — 1. Hences £, w, for all w
with |w| = ¢.

Now we consider the case wherl = |y| =i for1 < i <t — 1. We prove that ifr is equivalent
with y, they are equal. Indeed,if=;, y, and we append both words with another non-empty word, the
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results must be both ih/, or in L!, since they have the same last letter. Assuming:thgty, let k& be
the first position on which they differ. Without any loss of generality we can assume that on the position
k > 1, z hasa andy hasb. We consider the word = a'~**~1 sozz has ar on positiont counting
from the right of the word, whereag: has ab, soyz ¢ L!". Becauseyz ends ina, it cannot be in/,
either. Sincezz endsinaand|zz| =t—i+k—1+i=t+k—1landt <t+k—-1<2t—1,2z€ L.

Hence, the words andy are not equivalent; thus, all words of length at moestl are not equivalent.

We have proved that these words are also non-similar, $inge= |yz| < 2t — 1.

Let us count the number of dissimilar words of lengttFirst, let us note that two words of length
t are similar iff they are equivalent. It is easy to see that all the wards aw-b = y = bwqb are
equivalent, since they differ only on the first letter, they are both in the language, and for any wford
length greater than I,z € L andyz € L orzz ¢ L andyz ¢ L (thet-th letter from the right is the
same). In what follows, we prove that all other words of lengaine not equivalent. Let us consider two
wordsz, y of lengtht having the same letter on the first position and having a different letter on position
k > 2. We may assume thatis the greatest with this property, and on that position is the letter:
and the letteb in y.

Let us consider the word = a*~!. Thenzz € LY, since ends im (k > 2, thusk —1 > 1) and
also has am on the positiort, counted from the right (the on positionk of z). But at the same time,
yz ¢ L,. Since is longer than it is not in L], and has & on the positiort counted from the right (the
b on the positiork of y), thus is not inL!! either. So, we just proved that all the words that differ on a
position greater than first letter are not equivalent, and not similar either.

Let us consider the words andy of lengtht, that differ only on the first letter, sac = aw; and
y = bws. If the last letter ofw, is a, thenz is in the language, but is not. Therefore, all these words
are L-dissimilar.

Counting the number of dissimilar words with respecttave get all words of length 1, 2, .#.— 1,
and all words of length, except2t—2 of them. Therefore, our numberisf 22 + 23 + .. + 271 4 2t —
2t—2 — 2t+1 —1= 2t—2 — 2t + 2n—t _ 2n—t—2 —_1= 2t + 2n—t—1 + 2n—t—2 1= LB(TL)

II. We will consider now the second case, wheis odd. We will prove that in this case we have
2t — 1 + 2!=2 dissimilar words, meaning that we reach aghii(n).

Let us now count the number of dissimilarities with respecitoFor any two wordse, y with
lz| < |y| < t—1, we can choose = b'~ 1Yl and we have thdyz| = |y|+t—|y| = t and|zz| < |yz| = t.
The wordyz is in L/, but the wordzz ¢ L/ (has length less that) and alsozz ¢ L!/, because it
ends inb and does not end ia. Therefore, all these words are not similar with respeck toNow,
let us take two distinct words andy of equal length less thah— 1. We may assume without any
loss of generality that = z'az”, y = y'by”, andz” = y". Takez = a!~2-12"I_ It follows that
lzz| = |2/ |+ 1+ 2"+t —2—|2"| =t -1+ |2|,s0oxz € L!! C L, butyz ¢ L, sinceyz ¢ L!!, and
if lyz| =t, z # ¢, therefore the last letter af: isa andyz ¢ L.

For words of length equal to— 1 we can apply the same proof for words ending:iand we get
212 dissimilar words; for words ending inwe get only2‘=3 dissimilar words. The words ending in
and those ending ih are also dissimilar one with each other so, there are at %a%t+ 2:=3 words of
lengtht — 1 dissimilar one with each other.

Now let us analyze words of lengthLetz € ! andy € ¥*, |y| < t. We distinguish the following
cases:

1. z = 2'az” andy = y'by", 2" = y". We takez = a!~271%"| sot < lzz| < 2t — 2, lyz| < 2t — 2,
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xz € Lbutyz ¢ L, sinceyz ¢ L!! and|yz| =t impliesz # ¢, soyz ¢ L.,.

2.z =2'bx” andy = y/ay”, 2" = y". We takez = '~ 271" sot < |zz| < 2t — 2, |yz| < 2t — 2,
yz € L, butzz ¢ L, sincexz endsina xz ¢ L], andzz ¢ L.

3. y is a suffix ofz. If [y| > 1, we takez = bWl +#£ ¢, so|zz| < 2t — 2, |yz| < 2t — 2 and
yz € L, butzz ¢ L. If |y| < 1, we takez = o™ '71°l £ ¢, sozz € L, butyz ¢ L, since
lyzl=lyl+n—-1—|z| <t -1

For all cases we have thatX; y, since the length of the longest wordinisn — 1 = 2t — 2.

We now analyze the similarity between words of the same lengilVe take the following words
uaza anduaya, u € {a,b}, z,y € X'~3. Without any loss of generality we may assume- 2’ax”,
y = y'by", andz” = 1. We takez = a'~2~1*"I and we get thatz € L, butyz ¢ L, using the same
arguments as before. The same result we get for the words of the fabmatandubzb, v € {a,b},
x € X3,

If we takeuaxa andubya, we can see that the first one is in the language, while the second one is
not. The same thing happens if we takera andubyb. If we takeubxa andubyb, let z = a'~2. We
have thatubzaz € L, butubybz ¢ L; therefore, all words in these three categories aré-alissimilar.

Hence, the number df-dissimilar words can now be counted in the following way:
t—2

D 2ttty g.oft = ol 9244908 = of 149872 = LB(n), which completes

{hg proof for the case whenis odd.

Since in both cases:(even;n odd) we succeeded to prove that there are at [B&Xt) dissimilar
words in the given language, which actually implies that there are atlg2&t) dissimilar states in the
corresponding DFCA we have proved the theorem. O

Remark 3.1. The language considered in the previous theorem is the NFA constructed in [5], modified
as follows: we add a transition from the statel into n — 1 with the lettem, and, we delete the transition
fromn — 2 into n — 1 with the letterb. The modification is required since the DFA obtained by subset
construction from the NFA in the paper [5] has! similarities and therefore, the DFCA has a much
lower state complexity.

4. Upper bounds

In this section we give some necessary conditions for a NFA to obtain lesé/tBan, p) states when
transformed to a DFCA. Therefore, if one “needs” an NFA which when transformed to a DFCA has to get
higher state complexity thalii B(n, p), then the NFA must not satisfy any of the conditions mentioned

in this section.

Since we are interested in finding an upper bound, once we establish that automata having a certain
property will not reachlU B(n, p) states when transformed to a minimal DFCA, we assume that all
subsequent automata are not satisfying that particular property since our quest is to settle the discussion
about transformations from NFA to DFCA (i.alVhat is the highest possible number of states in the
DFCA when starting with amn states NFAY.

Letm = max{i | levp, ; # 0}. Most of the results given in the Lemma 4.1 can be found in Salomaa
and Yu [5] in Lemma 1, Lemma 2, and Corollary 1, using a slightly different notation. We view these
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properties as an important staring point of the discussion; even though the results are given for the DFA,
the results apply also to the DFCA.:

Lemma 4.1. We have the following:

1. |levp, i| < P, 2. Levy, ; #0,foralll <i <1, 3. ifLevn,(q) =1i,q¢ U Qp.j
>t

4, |UQDJ" <n-—1, 5. ‘QD,@" <n-—1i, 6. ’levDL,i‘ < min(pi’znfi)_
Jj=i

Proof:

1. We have thatlevp, o = {0} and|levp, i+1] < p- |levp, il.
2. Assume that there j§ j < I such thatLevy, ; = (). Thenl < j, contradiction.

3. Ifqge S, S € levp, ; andj > i, if follows that there isw € ¥*, such thay € 6y (0,w), i.e.,
Levn, (¢) > j > i, contradiction.

4. This follows from the fact that for eaghl < i < m, there is at least one statec @) ; for which

q¢ U Q@D

J>i

5. Follows from 4.

»

. Follows from 5 and 1.
O

Lemma 4.2. If the maximum level in the DFA is less than (i.e., m < t,) then we have@Qp| <
UB(n,p).

Proof:

If m < ¢ (m the maximum level in DFA), then we have that< ¢t — 1, and using the Lemma 4.1 we
m m t—1

obtain:|Qp| <> |levp, | <> p' <Y p' < UB(n,p), which proves the statement. O
i=0 i=0 i=0

Since form < t the number of states i)y is less tharU/ B(n, p), in what follows we consider only
the case < m.

For the states of level less thamve analyze what happens if two of them have the same maximum
level in the NFA.

Lemma 4.3. Assume there i§ < ¢ < t — 1 and there are two statasq € U Qp,; such thats, g ¢
j>i

U @p ;. In these conditions we have thalp| < UB(n,p).

j>i
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Proof:
Let s, ¢ satisfying the properties mentioned in the lemma. Then foj all i | U Qpxl < gn—(j+1)

k>j
using the same reasoning as in Lemma 4.1 property 4, but now we have twofsjtates that appear up to level
i. Using this and the fact that the number of subsets of a setnith(j — 1) — 2 elements is at most
on=(i+1) we get the inequality.

The next step is to approximate the number of state@inby considering the maximal possible
number of states on level 0, on level 1, on level 2, and so on up tojevad, then the rest of states that
can be found on a level greater thaasing the previous inequality. It is easy to notice that this particular
value is maximal whep = t.

Hence, we havpk possible states on each of the levels k < ¢ — 1 plus the number of states that
are of levelt of higher using the result obtained above.

Qp| < 1+4p+..p t4pi+. . 4pi~t4on it
= 14p+...p4p 4. Fpitpont _gntrl
= ldpt. p hpi il gt gntel  gnet=2 _ gn—t-2
= 14p+...ppp 4. pttgont —ont=2 4 gn=i=2_ on-i-l
= UB(n,p)+2"7'72 = 2""""1 <UB(n,p).

O

Therefore, at each level0 < ¢ < t— 1, in DFA there is one state and only onpresent in all states
from that levelS € levp, ;, and is only in these states. Without any loss of generality, we may assume
that the name of the state on levé$ exactlyi, i.e.,i +1 € dn(i,a), foralla € X, when0 <i <¢—1.

Also, for states greater thame may assume that they are topologically ordereddi(é.q) = j implies
i1 <g,forallt<i,j<n-—1.

As a consequence, for any stétes Qp, S C {t,t +1,...,f},S # dp(R,a), foranyR € Qp
andRN{0,...,t —2} # 0.

Lemma 4.4. If there exists, 0 < i <t —2,dn(i,a) = on(i,b), |Qc| < UB(n,p).

Proof:
Sincet = (%1, n < 2t,son —t—2 <t—2. Now, assume thereis0 < ¢ < t — 2, such that
(5N(i,a) = 5N(’i,b). Then

L+p+p*+. . +p +p +p T+ +p 2427

L4 p+p 4. 4P +p T b pt 2t pon—t _gn—t=2 f gn—t=2 _ t-1
UB(n,p) +p' +2" 7172 —=p' ! < UB(n,p) +p' 2 —p'~ 1 + 277172

UB(n,p) —p =2 +2"7172 < UB(n,p) + 2" 72 — 2t=2

UB(n,p)

[#35)

IA
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One can easily observe from the proof of the previous lemma, thatfo?, orp = 2 andi < ¢t — 2,
orp = 2,i =t — 2, andn odd, the inequality is strict.

The next lemma proves that if we have a final state Q, t < s < f, we cannot reach the upper
bound forQ p (therefore, neither fof) ).

Lemmad4.5.1f g€ Fn,q# f,q>t foranyS C {t,t+1,...,n—2}, with (SU{f,q}),(SU{q}) €
Qp, thenwe havéS U {f,q}) = (SU{q¢}).

Proof:
Recall thatf = n — 1. We have thalf € ép(SU{f,q}.¢) € Fp,q € 0p(SU{¢},e) € Fp. So we
cannot distinguish witha.

If we Xt op(SU{f,q},w) =dp(SU{q},w)Udp({f},w)=0p(SU{qt,w)Ud=2¥p(SU
{a}, w). O

Corollary4.1. If g € Fy,q# f,q > t,|Qc| < UB(n,p).

Proof:
We have that the number of states in a cover automaton:
n—t
Q| < 1+p+...+p“+7
< l4p+... Fptgont _gnmirl
< l4p+.. Fpittyont _ont=2

UB(n,p).

This happens because we lost all the equivalent sets of states from the level greater than ot ¢oatal to
contained;. O

The following lemma continues the discussion for the states that appear on a level greater than

Lemma 4.6. If for all w € ¥* with the property thad(¢,w) = f we have thatw| = n — 1 — ¢, then
|Qo| <UB(n, p).

Proof:
We prove the stateg} U S andS are similar foreverys C {t + 1,..., f}.
Indeed, if a statéd C {t+1,..., f} is reachable iDy its level is at least + 1, therefore we need

to check the stateg} U .S and.S with all words of length at most — 1 — (¢ + 1) = n — ¢ — 2. Since for
such wordsw, iy (t, w) N Fy = 0, it follows thatdp (({t} US),w) € Fp iff 6p(S,w) € Fp, forallw €
y<rt=2je, ({t} US) ~p, S. The number of such pairs of similar stategs!~(+1+1 = gn—t-1,
Since, all reachable similar statesiily, are merged into one in the minimal DFGZy,, the number of
states inC7, is at most’l’:f*11 +2n=t —on=t=1 < U B(n,p) 0

If the condition on the above lemma is not satisfied, there is a woed ¥* with §(¢,w) = f and
|lw| < n—1—t. Lets be the first state greater than- 1 for which (s + 1),q € §(s,a), a € ¥ or
{(s+ 1)} = d(s,a), and there is another lettérc X such thaiy € (s, b), andf € d(q,u) for some
lu| < n —t— 2. We can continue the discussion by considering these cases:
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1. (s+1),q € d(s,a)and
2. (s+1)€d(s,a),q € d(s,b),andf € d(q,u) for somea,b € ¥ and|u| <n —t — 2.

In the first cases + 1 cannot occur in any staté € Qp, S C {t,...,n — 1} withoutq. Therefore, in
this caséQp| < % 4 on—t _gnt=ll-l 1]’;%11 +2n~t —2n=t=1 < UB(n,p).
In the second case, the problem is still open.

5. Conclusion

We have proved that for an NFA with states accepting a finite language over a binary alphabet the
equivalent minimal DFCA has at leaitz | =2 less states than the number of states of the minimal DFA.
Moreover, the number of languages for which this (associated DFCA) complexity is high, could be
viewed as low when it is compared with the total number of NFAs ofsiZEhis could prove very useful
if one needs to make memory estimations according to the structure of an NFA given as input. In the
section 4 we have given several results that provide more understanding of the structure of automatons
that will yield the worst number of states when they are transformed into a DFCA. The discussion was
given for a general alphabet of sipeone could consider the restriction to binary alphabets to obtain a
better understanding of the structure of the NFA in that case. Of course, the discussion becomes more
involved if one considers arbitrary alphabets.
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